Thursday, 5 May 2016

Spoj Problem ABCDEF-ABCDEF[C++ Solution]

 Spoj Problem ABCDEF-ABCDEF[C++ Solution]


Problem Statement:-http://www.spoj.com/problems/ABCDEF/

Hint:-


We can write it as-
                              a*b+c-de=df            (Multiply each term on both sides with d)
                              a*b+c=de+df
                              a*b+c=d(e+f)

Now we calculate every possible set value with given input on LHS(a*b+c) and on RHS(d(e+f)) in O(n^3) as there are three variables on each side and save the in array(as in solution L and R).Array size is approximately equal to N*N*N.In RHS d cannot be equal to 0.We calucate the answer by comparing L and R whenever they are equal.We count the frequency of values in a separate array(as in below soltion cntL and cntR),whenever LHS calculated value and RHS calculated value are equal we add the all possible sets by multiplying their frequencies.


Note:- Keep in mind d cannot equal to 0.
            qsort of stdlib gives TLE.

Program:-


#include<stdio.h>
#include<algorithm>

using namespace std;

int L[1000000],R[1000000],cntL[1000000],cntR[1000000];

int main(){

int N,i,j,k;
scanf("%d",&N);

int ar[N];

for(i=0;i<N;i++){
scanf("%d",&ar[i]);
}



int sizeL=0,sizeR=0;
for(i=0;i<N;i++){
for(j=0;j<N;j++){
for(k=0;k<N;k++){
L[sizeL++]=(ar[i]*ar[j])+ar[k];
}
}
}


for(i=0;i<N;i++){
if(ar[i]==0){
continue;
}
for(j=0;j<N;j++){
for(k=0;k<N;k++){
R[sizeR++]=ar[i]*(ar[j]+ar[k]);
}
}
}

sort(L,L+sizeL);
sort(R,R+sizeR);

int t=1;
cntL[0]=1;cntR[0]=1;
for(i=1;i<sizeL;i++){
if(L[i]!=L[t-1]){
L[t]=L[i];
cntL[t]=1;
++t;
}else{
++cntL[t-1];
}
}

int t1=1;
for(i=1;i<sizeR;i++){
if(R[i]!=R[t1-1]){
R[t1]=R[i];
cntR[t1]=1;
++t1;
}else{
++cntR[t1-1];
}
}
long long ans=0;


for(i=0,j=0;i<t&&j<t1;){
if(R[j]==L[i]){
ans+=(long long)cntL[i]*cntR[j];
}
if(L[i]<R[j]){
i++;
}else if(L[i]>R[j]){
j++;
}else{
i++;
j++;
}

}

printf("%lld\n",ans);

return 0;
} 




Input:-

2
-1
1

Output:-

4


--------------X--------------X--------------X--------------X--------------X--------------X--------------X---------

Labels: ,

1 Comments:

At 23 May 2021 at 23:56 , Blogger Unknown said...

Thank you

 

Post a Comment

Subscribe to Post Comments [Atom]

<< Home